1. Разработка прогнозов с помощью метода скользящей средней

1 2 3 4 5 6 7 8 9 10 11 12 13 14 
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 

 

Одним из наиболее старых и широко известных методов сглаживания временных рядов является метод скользящих средних. Применяя этот метод, можно элиминировать случайные колебания и получить значения, соответствующие влиянию главных факторов. Сглаживание с помощью скользящих средних основано на том, что в средних величинах взаимно погашаются случайные отклонения. Это происходит вследствие замены первоначальных уровней временного ряда средней арифметической величиной внутри выбранного интервала времени. Полученное значение относится к середине выбранного периода. Затем период сдвигается на одно наблюдение, и расчет средней повторяется, причем периоды определения средней берутся все время одинаковыми. Таким образом, в каждом случае средняя центрирована, т.е. отнесена к серединной точке интервала сглаживания и представляет собой уровень для этой точки.

При сглаживании временного ряда скользящими средними в расчетах участвуют все уровни ряда. Чем шире интервал сгаживания, тем более плавным получается тренд. Сглаженный ряд короче первоначального на (n–1) наблюдений (n – величина интервала сглаживания). При больших значениях n колеблемость сглаженного ряда значительно снижается. Одновременно заметно сокращается количество наблюдений, что создает трудности.

Выбор интервала сглаживания зависит от целей исследования. При этом следует руководствоваться тем, в какой период времени происходит действие, а следовательно, и устранение влияния случайных факторов.

Данный метод используется при краткосрочном прогнозировании. Его рабочая формула:

   = + ,    (1)

где  t + 1 – прогнозный период;

  t – период, предшествующий прогнозному периоду (год, месяц и т.д.);

  yt+1 – прогнозируемый показатель;

    – скользящая средняя за два периода до прогнозного;

   n – число уровней, входящих в интервал сглаживания;

  yt – фактическое значение исследуемого явления за предшествующий период;

     yt-1 – фактическое значение исследуемого явления за два периода, предшествующих прогнозному.